返回网站首页
当前位置:主页 > 亮化工程公司 >
学习强化学习:代码、练习及答案(附下载)
作者:admin  日期:2021-10-13 05:41 来源:未知 浏览:

  ❶ 业界领袖回溯60年AI历史,全球对话人工智能未来挑战,权威发布2016世界人工智能名人堂及中国人工智能产业发展报告;❷ 国际大咖“视频”远程参会, Bengio 和李飞飞联袂寄语中国人工智能;❸ 探秘讯飞超脑及华为诺亚方舟实验室,最强CTO与7大研究院院长交锋;❹ 滴滴CTO与百度首席架构师坐镇智能驾驶论坛,新智元三大圆桌阵容史无前例;❺ 中国“大狗”与X-Dog震撼亮相,龙泉寺机器僧“贤二”卖萌。

  【新智元导读】谷歌大脑的 Denny Britz 在他的个人博客上发表了一篇强化学习经验总结,包括好用的教程和教材,最关键的,是他经试着用 Python、OpenAI Gym、Tensorflow 写了大部分标准强化学习算法,并且按章节列出,还提供了练习和答案,是为强化学习实践的好资料。

  强化学习(Reinforcement Learning,RL)是我最感兴趣的领域之一。过去几年里强化学习取得的一些成果得到了很多关注,例如掌握围棋、,但强化学习还可以广泛应用在机器人学、图像处理和自然语言处理。

  强化学习和深度学习技术结合的效果非常好。这两个领域在很大程度上相互影响。从强化学习的角度看,深度神经网络可以作为函数逼近器学习好的表征,例如,处理 Atari 游戏图像或理解围棋棋局。从深度学习的角度看,RL 技术能监督通常由深度学习处理的问题。例如,RL 技术用于在图像处理时执行注意机制,或用于优化对话界面和神经翻译系统的长期奖励机制。最后,由于强化学习关注最佳决策,它和人类心理学、神经科学以及许多其他领域有一些非常有趣的相似之处。

  随着基础性研究出现大量开放性问题和挑战,我认为不久的将来就能看到强化学习的许多突破。还有什么比教计算机玩《星际争霸》和《毁灭战士》更有趣呢?

  【倒计时 5 天,点击“阅读原文”抢票!!】❶ 业界领袖回溯60年AI历史,全球对话人工智能未来挑战,权威发布2016世界人工智能名人堂及中国人工智能产业发展报告;❷ 国际大咖“视频”远程参会澳门资料网站 Bengio 和李飞飞联袂寄语中国人工智能;❸ 探秘讯飞超脑及华为诺亚方舟实验室,最强CTO与7大研究院院长交锋;❹ 滴滴CTO与百度首席架构师坐镇智能驾驶论坛,新智元三大圆桌阵容史无前例;❺ 中国“大狗”与X-Dog震撼亮相,龙泉寺机器僧“贤二”卖萌。

  【新智元导读】谷歌大脑的 Denny Britz 在他的个人博客上发表了一篇强化学习经验总结,包括好用的教程和教材,最关键的,是他经试着用 Python、OpenAI Gym、Tensorflow 写了大部分标准强化学习算法,并且按章节列出,还提供了练习和答案,是为强化学习实践的好资料。

  强化学习(Reinforcement Learning,RL)是我最感兴趣的领域之一。过去几年里强化学习取得的一些成果得到了很多关注,例如掌握围棋、,但强化学习还可以广泛应用在机器人学、图像处理和自然语言处理。

  强化学习和深度学习技术结合的效果非常好。这两个领域在很大程度上相互影响。从强化学习的角度看,深度神经网络可以作为函数逼近器学习好的表征,例如,处理 Atari 游戏图像或理解围棋棋局。从深度学习的角度看,RL 技术能监督通常由深度学习处理的问题。例如,RL 技术用于在图像处理时执行注意机制,或用于优化对话界面和神经翻译系统的长期奖励机制。最后,由于强化学习关注最佳决策,它和人类心理学、神经科学以及许多其他领域有一些非常有趣的相似之处。

  随着基础性研究出现大量开放性问题和挑战,我认为不久的将来就能看到强化学习的许多突破。还有什么比教计算机玩《星际争霸》和《毁灭战士》更有趣呢?

上一篇:放弃微软Asp平台 网界网社区全面转向php
下一篇:源代码100%自主研发 武汉达梦数据库凭借“根技术”优势稳居国产